US 2004/0187096 Al

program. For example, the parameters of a modem may have
to change depending on the geographical location of the
computer. Thus, if the geographical location is represented
by an attribute of a class, the attributes of a modem class
may be need to change accordingly is the geographical
location attribute changes.

[0013] Such behavior dependencies can be provided by
hard-coding the dependency information in each of the
appropriate classes and by linking attributes of one class
with attributes of another. However, this can lead to program
code which is cumbersome and hence lead to increased
maintenance difficulties. Additionally, should any of the
dependencies change, this will generally require modifica-
tion of each of the classes concerned. Furthermore, a con-
figuration system with a large number of system elements
will generally require the computer program to have a large
number of classes. In many cases, however, many of the
classes will be similar in nature which can lead to the class
definition section of the computer program being long and
repetitive in nature.

[0014] One way of reducing the coding effort required is
to define the properties of each class using a declarative
description, and to use a generic class-making module for
creating class implementations using the class declaration.
This is particularly useful where many similar but different
classes are required, as is often the case when modeling
configuration trees.

[0015] In the Perl programming language, for example,
there exist a number of generic class-making routines such
as the Class::Struct module, which forms part of the standard
Perl distribution, and the well-known Class::MethodMaker
module which is available through the comprehensive Pearl
archive network (CPAN) at http://www.cpan.org. Class-
::MethodMaker may be thought of as a function which takes
input parameters which define the nature of the data con-
tainers (or attributes) and the class accessor methods for
each class, and which creates a class implementation based
on those input parameters.

[0016] A computer program written using such techniques
therefore comprises two principle sections: a first section
containing the class declarations that define the class imple-
mentations which will be created at run-time; and a second
section containing program code which will create the
configuration model in, for example, the memory of a
computer, by referencing the class implementations created
at run-time by the class-making module or, alternatively, by
calling the classes through the methods created at run-time.

[0017] In this way, the classes may be defined in a simple
and concise declarative manner which often helps in facili-
tating the initial writing of the code as well as improving the
maintainability of the code.

[0018] However, such a declarative approach does not
enable dependencies between classes or attributes (other
than those inherent in the tree structure due to the hierar-
chical structure) to be defined.

[0019] Accordingly, one aim of the present invention is to
overcome at least some of the above-mentioned problems by
providing a framework which enables dependency informa-
tion to be easily defined using a declarative approach to class
definition.

Sep. 23, 2004

[0020] According to a first embodiment of the present
invention, there is provided a method, within an object-
oriented computer program, of creating a dependency
between a first class and an element of a second class in a
hierarchical arrangement of classes created by a class-
making module using declarative definitions of each class.
The method comprises defining, within the first class defi-
nition, position information defining the relative position
within the hierarchy of the element of the second class, and
rule information defining the nature of the dependency; and
incorporating functionality within the first class to interpret
the rule and position information to create the dependency.

[0021] In one embodiment, where the element of the
second class is an attribute, and the rule and position
information is associated with an attribute of the first class,
the incorporated functionality is arranged for performing the
steps of: obtaining the value of the attribute of the second
class using the position information; and determining a
value of the attribute of the first class by using the obtained
value and the rule information.

[0022] Suitably, the step of obtaining the value of the
attribute of the second class may further comprise: inter-
preting the position information to extract the relative loca-
tion of the second class; and retrieving the reference to the
second class by recursively navigating the hierarchical
arrangement of classes in accordance with the interpreted
position information.

[0023] The step of obtaining the value may further com-
prise registering, with the second class, the rule information
and a reference to the attribute of the first class such that an
accessor method used to interrogate the attribute of the
second class modifies, by way of the registered reference,
the attribute of the first class by applying the registered rule
information in association with the attribute of the second
class.

[0024] Preferably the incorporated functionality within the
first class is provided through one or more external classes
having functionality for interpreting the position and rule
information.

[0025] In a second embodiment, where the element of the
second class is an attribute, and where the rule information
defines the creation of an object from a choice of classes
based on the value of the attribute, the method may further
comprise obtaining the value of the attribute of the second
class using the position information; and creating a new
object in accordance with the obtained value and the rule
information.

[0026] The method may further comprise creating a hid-
den object intermediate a first object created from the first
class and the new object for regulating access to the first
object.

[0027] The step of obtaining the value may further com-
prise registering, with the second class, a reference to the
hidden object and the rule information such that an accessor
method used to interrogate the attribute of the second class
may cause the hidden object to create a further new object,
and hence to prevent access to the previous created object,
in accordance with the rule information.

[0028] Where a further new object is created, the method
may further comprise copying attribute values from the
previous created object to the further new object on a
best-effort basis.



