US 2004/0187096 Al

[0029] The step of obtaining the value of the attribute of
the second class may further comprise interpreting the
position information to extract the relative location of the
second class; and retrieving the reference to the second class
by recursively navigating the hierarchical arrangement of
classes in accordance with the interpreted position informa-
tion.

[0030] The computer program may be written in the Perl
language, in which case the class-making module may be the
Class::MethodMaker module.

[0031] Additionally, each class declaration may addition-
ally include a privilege level identifier associated with each
attribute thereof. In this case the method may further com-
prise comparing the privilege level identifier with a prede-
termined user associated privilege level and only allowing
access to that attribute if the user privilege level is at least
as high.

[0032] In a further embodiment, there is provided a
method, within an object-oriented computer program, of
creating a dependency between a first class and an element
of a second class in a hierarchical arrangement of classes
created by a class-making module based on declarative
definitions of each class. The method may comprise defin-
ing, within the first class definition, position information
defining the relative position within the hierarchy of the
element of the second class, and rule information defining
the nature of the dependency; such that an accessor method
created for accessing the attribute of the first class is
arranged for: obtaining the value of the attribute of the
second class; and modifying the attribute of the first class in
accordance with the value of the attribute of the second class
and the information contained in the second information
item.

[0033] The invention will now be described, by way of
non-limiting example, with reference to the accompanying
diagrams, in which:

[0034] FIG. 1 is a diagram showing a configuration tree
representation of a simple computer system;

[0035] FIG. 2 is a flow diagram outlining the main func-
tional steps of a tree navigation function according to an
embodiment;

[0036] FIG. 3 is a diagram showing an extract of the
configuration tree of FIG. 1;

[0037] FIG. 4 is a diagram showing an expanded extract
of the configuration tree of FIG. 1;

[0038] FIG. 54 is a flow diagram outlining the main
functional steps for implementing a value dependency
according to an embodiment;

[0039] FIG. 5b is a flow diagram outlining the main
functional steps for accessing a value which has dependen-
cies according to an embodiment;

[0040] FIG. 6 is a flow diagram outlining the main func-
tional steps for implementing a value dependency using a
Perl-type implementation; and FIG. 7 is a flow diagram
outlining the main functional steps for implementing an
object dependency using a Perl-type implementation.

[0041] Referring again to FIG. 1, there is shown an
example computer system made up of the following nodes:

Sep. 23, 2004

a computer 102, a video card 104, a monitor 108, and a
processor 114. The computer node 102 has an attribute of
computer type, 103, video card has attributes of video
memory, 106, and pixel clock, 107, the monitor has
attributes of screen resolution, 110, and refresh rate, 112, and
the processor has attributes of clock frequency, 118, and
cache size, 120. Each of the attributes and nodes may have
an associated behavior. For example, the computer type
attribute 103 may be limited to taking a value of ‘laptop’ or
‘desktop’, the attribute clock frequency 116 may have maxi-
mum and minimum values and so on.

[0042] As previously described, one way to create a com-
puter program to model the configuration behavior of a
system is to use an object oriented approach and to define
classes which model the behavior of each of the system
elements.

[0043] Using a generic class-making module, for example
such as the Perl Class::MethodMaker module, the various
classes required for modeling the configuration behavior of
the different system elements may be declared as shown
below. For ease of explanation the tabulated views, below,
outline the nature of each class, and the pseudo-code rep-
resentations outline an example high-level implementation
of the class which may be implemented in a number of
different programming languages.

COMPUTER CLASS - TABULATED VIEW
CLASS NAME: Computer

ATTRIBUTES Type Comments

computer__type  enum Choice: ‘Laptop’, ‘Desktop’

video__card VideoCard
Processor Processor
[0044]

COMPUTER CLASS - PSUEDO-CODE

class Computer ; # declaration of the main computer class

attributes: # define the attributes of the class

{
computer__type :
type: enum;
choice: (‘desktop’, “laptop’);
video__card: # define the other nodes which depend from the
Computer
# node
type VideoCard ; # video__card is of type VideoCard class
processor: #
type Processor ; # processor is of type Processor class
b




