US 2004/0049598 Al

event that a first link is not found the n-depth Compressor
looks for a second link by returning to 1002.

[0056] FIG. 11 illustrates an exemplary method in flow-
chart form for the list/cache manager. The cache manager
usually waits for a connection (1110) and determines the
request nature (1120) e.g., removing, adding or searching. If
the item needs to be removed, the item is first found (1130)
and then removed (1140). If the item needs to be added, it
is added (1150). If the item needs to be found, the current list
is searched (1160) and a reply is generated for the search
request (1170). The list is updated in any of the three
requests and a log file is generated (1180).

[0057] The stealth distribution server has the same func-
tionalities as a distribution server in addition to other func-
tionalities, mentioned herein. The stealth distribution server
accepts content delivery requests and creates new requests to
retrieve data. Similar to the distribution server, the stealth
distribution server supports all the standard proxy server
features and the editing and compression techniques dis-
cussed in the present invention. The difference between the
stealth distribution server and the distribution server include
two configuration settings, the option to be setup as a circuit
proxy and the option to retrieve everything from a single
address. The stealth distribution server uses three networks,
one protected inside network, one outside network usually
connected to the Internet, and an optional dedicated con-
nection to the OCDS network. The stealth distribution server
protects the inside server from the outside network and
provides increased bandwidth. The stealth distribution
server, while servicing the request for content delivery,
protects the web server from outside networks. The stealth
distribution server will also compress and cache content to
increase the existing bandwidth, which is further enhanced
by utilizing the dedicated connection to the OCDS network.
Requestors requesting content from a web server will
request the content from the stealth distribution server which
will provide the content in a compressed form from its cache
(database). If the content is not available in the stealth
distribution server cache, the content is requested from the
web server edited, compressed and cached. The content is
then sent to the requestor and is also available in future
requests by the same requester or any other requestor. Thus
acting as a protecting firewall to the web server. Both the
stealth distribution server and the distribution server, men-
tioned hereinbefore, may be configured to deliver realtime
compressed content with the aid of a robot or over time once
the content has been requested.

[0058] FIG. 12 is a diagram showing a general description
of the steps used to create a compressed image within the
instant content delivery system as well as the attributes of
the resulting “.trans” image. “.trans” refers to the proprietary
image type developed by Transfinity Corporation. The
“trans” image data is organized as byte streams consisting
of data chunks that are read sequentially. Each file begins
with header information consisting of a file header 1214
followed by an Image Data Header 1216, Combination
Image Descriptor 1218, and an n-Bit Compression Header
1220. The image type may be either lossless or lossy or a
combination of both types. This is made possible by the
statistically based n-bit compressor. “.trans” supports true
color from 2 to 32 bits a pixel as well as transparent key
color. Grayscale is supported up to 16 bits per pixel. Accord-
ing to an embodiment of the invention the Scanner or the

Mar. 11, 2004

Editor first identifies an image type 1202. For example the
image is identified as a BMP, JPEG or GIF 1204. After the
image is identified it is decompressed 1206 and recon-
structed back into its aboriginal type 1208. (Note that BMP
is listed in step 1208 only by way of example). Thus an
image identified as a GIF is decompressed and reconstructed
back into a BMP or DIB image. The image is then com-
pressed 1210 using a proprietary compression system such
as the compression scheme in the co-pending U.S. patent
application Ser. No. 09/631,368. Step 1212 illustrates the
basic layout of a “.trans” image file. A file header 1214
begins each file and contains the following information. The
first field, the identifier, is always “.trans”. The second field,
tsize [1] is the size of the header itself. The third field,
WORD offset [1], equals the number of bytes from this
position of the beginning of the Image Data 1222. The fourth
field, numimages[n] states the number of images in the file.
“trans” supports multiple images of multiple types thus
facilitating the aforementioned proprietary n-Bit compres-
sion system, which may compress part of an image as
“trans” and compress other parts of an image in a different
format (e.g. JPEG) . The fifth field, numloops[1], shows the
number of loops an animated image will make. The sixth
field shows the type of compression used in the image (e.g.
JFIFjpeg/Huffman, BMP/n-bit). The filter type is set to 0 and
the last field shows the compression ratio. Table 1 present
the aforementioned information regarding fields in the file.

TABLE 1

/* Always “TRANS” */

/* Size of Transfinity file header */
/* Offset to image data */

/* Number of images */

/* Number of loops */

/* Compression type */

/* Filter code */

/* compressionratio */

BYTE identifier[5]

BYTE tsize[1]

WORD offset[1]

BYTE numimages[1]
BYTE numloops[1]
BYTE type[1]

BYTE filter[1]

BYTE compressionratio[n]

[0059] The second header is the image header, which
contains 10 fields. The first field BYTE tsize[1] shows the
size of the header, which is always 23 bytes. The second
field DWORD isize[1] is the size of the compressed data in
bytes. The third and fourth fields show the height and width
of the image. The high and low transparency range of the
image is shown by the fifth and sixth fields respectively
DWORD thrange[1] and DWORD tlrange[1]. The seventh
field WORD pause[1] determines the amount of time in
Yiooths of a second that the decoder should wait before
continuing to process an animation. The eight field BYTE
packed[1] Specifies what the decoder is to do after the image
is displayed. The ninth field WORD cid size[1] is a variable
and which is used to store the x and y attributes for
animation. The last field is BYTE reserved[1] is used for
background color information.

[0060] Table 2 presents the aforementioned information
regarding fields in the image header.

TABLE 2

typedef struct imagedataheader

BYTE tsize[1]
DWORD isize[1]
WORD width[1]

/* Size of image header */
/* Size of image data */
/* Width of image */

