US 2004/0049598 Al

TABLE 2-continued

WORD height[1]
DWORD thrange[l]
DWORD tlrange[1]
WORD pause [1]
BYTE packed[1]
WORD cid__size[1]
BYTE reserved[1]
} IMAGE DATAHEADER;

/* Height of image */
/* Transparency range */
/* Transparency range */
/* Hundredths of seconds to pause */
/* Bit one is transparency flag */
/* Size of combination image descriptor */
/* Reserved */

[0061] The Combination Image Descriptor follows the
above described image header and contains an array of
vectors, which mathematically describe the Image Data
1222. Some of the Image Data 1222 may be compressed as
a lossy image type while other parts of the image may be
compressed a lossless image type. WORD vectorArray
[cid, 5 size]. This field size is variable and is given in the cid
size field. This is an array of vectors describing lossless
portions of an image. The vectors always represent a rect-
angular area and each one is the coordinate for its place in
the image.

[0062] The n-Bit Compression Header contains six fields
and is always 10 bytes in size. The first field is the size of
the n-bit header. The second field contains the size of the
original file. Byte order is a number 0-20, which is the order
of the starting statistics for the n-bit image compression. If
the fourth field BYTE adaptive [1] is turned on then the
starting order adjusts during compression to the optimal
level. In other words the order statistics adapt to the data in
the file and compress such data to the appropriate level.
WORD mask[1] contains the block size of data that will be
processed before the compression ratio is checked to see if
the statistics need to be flushed.

[0063] Table 3 presents the aforementioned information
regarding information in the n-Bit Compression Header.

TABLE 3

typedef struct nbitcompressionheader

BYTE tsize[1]
DWORD size[1]
BYTE order[1]
BYTE adaptive[1]
WORD mask[1]
BYTE reserved[1]
} NBITCONPRESSIONHEADER;

/* Size of n-bit header */
/* Size of original file */
/* 0 thru 20 */

/* 1 is on, O is off */

/* Block sizes */

/* Reserved */

[0064] Clients, represent the users of the content distribu-
tion system which may range from a simple plug to access
the distribution network to a desktop version of the distri-
bution server, with any number of variations in between. In
a preferred embodiment, it may be preferable for clients to
perform several functions, depending on the requirements.
To perform these functions, clients may have plugins,
applets, active X-components, Javascript components,
HTML components and tags, client/server applications,
proxies, winsock applications or services, firewall applica-
tions or servers, drivers, and/or other services. The basic
functionality of a client 540 is to decompress the com-
pressed content received from the content distribution serv-
ers and/or network. Clients may also have the capability to
communicate with distribution servers through a variety of

Mar. 11, 2004

communication protocols in order to speed up data transfer,
the ability to perform client/server functions, and the ability
to perform other essential or optional features. Clients may
have the capability to subscribe to media multicasts from
distribution server, display the media from multicasts, per-
form proxy functions, perform firewall functions, and/or
other capabilities depending on the equipment deployed.
Clients may include personal computers (PCs), handheld
devices, wireless phones, etc.

[0065] FIG. 13 illustrates a diagram of the Proxy Client
1300 according to an embodiment of the invention. The
Proxy Client resides on the requestor’s computer; such
computer can be part of a network and configured as a
workstation or can be communicating with a network
through an ISP. The Proxy Client 1306 is multithreaded
1308, 1310 thereby allowing several actions to occur simul-
taneously. The requester makes a request 1304 through a
browser 1302 to the network for information, such infor-
mation being made up of HTML and Images 1312. The User
To Proxy Threads 1308 transfer data to the Proxy Server
Threads which carry the request to the Control Server 1314
to be compressed, cached, indexed and stored in compressed
or original form, or both. The control server returns com-
pressed HTML and compressed images (“.trans”) 1316 to
the Proxy Client 1306 which then decodes the compressed
data 1318, modifies the HTTP Header 1320 and passes the
decompressed data back to the browser 1322, 1324, 1326.
Step 1320 converts content type such as image/transfinity,
which is inbound from the control server to image/gif or
image/x-bitmap, PNG, or JPEG, and changes content length
to uncompressed length. In some instances undecoded infor-
mation is passed back to the browser 1328.

[0066] FIG. 14 is an overview diagram of the Plugin 1400
according to an embodiment of the invention. The Plugin
resides on the requestor’s computer; such computer can be
part of a network and configured as a workstation or can be
communicating with a network through an ISP. The Plugin
1402 is multithreaded 1404, thereby allowing several
actions to occur simultaneously. The requester makes a
request 1406 to a network for information, such information
comprising, for example, HTML and Images. The request is
processed compressed and placed in a cache 1408. The
control server returns compressed HTML and compressed
images (“.trans”) 1410 to the Plugin 1402 which then
decodes the compressed data 1412, modifies the HTTP
Header 1414 and passes the decompressed data back to the
browser 1416. The actions of the plugin are more fully
described in FIG. 15.

[0067] FIG. 15 is a diagram of the internal workflow of
the plugin according to an embodiment of the invention.
NPN_New Create Instance and Initialize 1502 begins oper-
ating when an embed tag whose type (image/Transfinity-
trans) is received from the Control Server. The plugin
extracts the SRC designator whose contents are “filena-
me.gif.trans”. The original extension of the image is left as
part of the SRC designator in order to prevent confusion on
the part of the user. For example a given URL may have both
a GIF and a JPEG of the same picture. Thus by leaving the
original designation as part of the “.trans” image the user is
able to differentiate between the original images. The Height
and Width characteristic is also a part of the embedded
information received by NPN_New Create Instance and
Initialize. If such height and width information is not pro-



