US 2008/0040498 Al

nized interaction both locally and remotely. For example, the
iTV Mobile service allows users to perform actions such as
voting and personalization (e.g.: related menus or sub-
menus, advertising and content relating to an end-user
profile or service subscription.

[0044] The iTV use case can be described in four steps
which correspond to four services and sub-services available
in an iTV mobile service. The first service is an 1TV
profile/menu service having the following sub-services: (1)
Mosaic menu: TV Channel landscape; (2) Electronic Pro-
gram Guide and triggering of related iTV service; (3) actual
iTV service; and (4) Personalized Menu “sport news.” The
second service can comprise a live enterprise data feed,
where stock tickers that stream real-time quotes, live intra-
day charts that show technical indicators, and news moni-
toring, weather alerts, charts, business updates, etc. are
provided. The third service can comprise live chat. The live
chat service can be incorporated within, but not limited to a
web cam, video channel, or rich media blog service. End
users can register, save their surname and exchange mes-
sages. Live chat messages appear dynamically in the live
chat service along with rich media data provided by the end
user. The live chat service can be either private or public in
one or more channels at the same time. End users are
dynamically alerted when new messages from other users
arrive. Dynamic updating of messages within the live chat
service can also occur without reloading a complete page.
The fourth exemplary service is karaoke, where a music TV
channel or video clip catalog is displayed together with the
animated lyrics of a song. The animated lyrics can comprise
fluid-like animation applied to the text characters of the
song’s lyrics in order to make the text characters appear as
though they were being sung along with the song (e.g.,
smooth color transition of fonts, scrolling of text, etc.) The
end user is then able to download a song of his/her choice
along with the complete animated lyrics by selecting an
interactive button.

[0045] As discussed above, an RTP payload is used to
describe and/or define an XML data fragment. Therefore, an
RTP payload format is also defined. A prior art RTP packet
format is shown in FIG. 54, where a common payload
header 524 comprises a type field 540, which indicates the
type of payload that content sample/payload 526 comprises,
an “A” flag 542, a priority (P) flag 544, and a counter (CTR)
field 546. The A flag 542 comprises a single bit field, which
when set to one indicates that a packet either is, or contains,
a random access point. The P field 544 indicates that priority
associated with the payload, i.e., some payloads that have a
higher priority may be transmitted on a more reliable
channel than that used to transmit a payload of lower
priority. The CTR field 546 that is incremented by one for
each new packet of corresponding priority.

[0046] FIG. 56 shows an RTP packet format used in the
various embodiments of the present invention. In addition to
the RTP header 522, the common payload header 524, and
the payload 526, a fragmentation unit (FU) header 550
which follows the common payload header 524 and a
fragment header 552 which in turn follows the FU header
550 are also defined. It should be noted that although it is not
shown in FIG. 5b, the common payload header 524 is
comprised of the same fields as described above in FIG. 5a.
In the case of fragmented packets, the type field 540 is set
to 6, indicating that the payload 526 is an FU. In contrast,
conventional RTP packets generally have 5 types of pay-

Feb. 14, 2008

loads defined, where a type 1 packet contains one or more
sample description(s), a type 2 packet contains a complete
SVG scene sample or one of its fragments, a type 3 packet
contains a complete SVG update sample or one of its
fragments, a type 4 packet contains a list of SVG elements
that are currently active, and a type 5 packet contains sample
dissimilarity information.

[0047] The syntax of the FU header 550 is also shown in
FIG. 5b. A 3-bit sample type field 554 indicates the type of
the sample contained in the fragmentation unit. The sample
type field 554 can take on one of the following five values:
0 indicates a distributed random access point; 1 indicates a
sample description; 2 indicates a scene; 3 indicates a scene
update; and 4 indicates sample dissimilarity information. It
should be noted that the sample type field 554 do not take
values 5, 6, or 7. A 2-bit fragmentation type field 556
indicates the semantics of the fragmentation used in forming
the fragmentation units. The fragmentation type field 556
can take on one of the four following values: 0 indicates
brute force XML fragmentation; 1 indicates syntactic frag-
mentation; 2 is reserved; and 3 is reserved. The remaining
3-bit reserved field is reserved for possible future exten-
sions.

[0048] The syntax of the fragment header 552 depends on
the fragmentation type 556 indicated in the FU header 550.
For various values of the fragmentation type, the syntax and
semantics of the fragment header are described below.
[0049] For each fragmentation-type, the syntax of the
fragmentation header will satisfy certain requirements. For
a lossless case, where no fragments are lost, the syntax
enables a receiver to reassemble the content sample from its
fragments when all fragments are received. For a lossy case,
when one or more fragments of a content sample are lost, the
syntax may allow the receiver to conceal the effect of packet
loss on the reassembled sample.

[0050] In one embodiment of the present invention, a first
type of fragmentation, referred to as brute force XML
fragmentation, can be utilized. This embodiment of XML
fragmentation involves an arbitrary splitting of XML data
based on MTU size without taking into consideration the
syntactic structure of the XML content. FIG. 2 illustrates an
example of brute force XML fragmentation, where XML
content 200 is fragmented into fragments 210, 220, 230, and
240 without regard for where the fragment partitions are
made. For example, the element “CD” is partitioned
between its “country” and “company” sub-elements, creat-
ing the fragments 210 and 220.

[0051] When brute force XML fragmentation is utilized,
as shown in FIG. 2, the XML data is easily fragmented into
its respective fragments, 210, 220, 230, and 240. If all of the
fragments 210, 220, 230, and 240 are received by the
receiver, the XML content is easy to reconstruct. However,
if one or more of the fragments 210, 220, 230, and/or 240
is/are lost, it is difficult for the receiver to reassemble the
data because the receiver has no knowledge of the nesting
structure of the XML content. In addition, error concealment
is also difficult to perform because if fragments are lost,
brute force XML fragmentation relies mainly on the retrans-
mission of lost fragment packets.

[0052] Three possible options exist regarding a fragment
header syntax for brute-force fragmentation: (0) Start flag,
End flag; (1) Sample 1D; (2)

TotalFragmentsPerSample. They are summarized with their
associated advantages and disadvantages in Table 1 and



